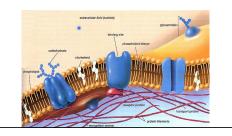
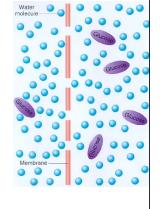

Chapter 7: Membrane Structure and Function

- We are going to cover the structure and function of the plasma membrane, including how molecules get in and out of cells.
- We are also going to cover surface modifications.

Membrane Models: Early Observations

- Lipid-soluble molecules entered cells more rapidly than water-soluble molecules.
- Chemical analysis revealed the membrane contained phospholipids.

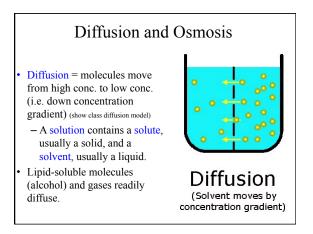

Nonpolar tails directed inward, polar heads
outw
bydrophilic
bydrophilic


Membrane Model

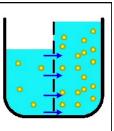
- 1972, Singer and Nicolson introduced the fluidmosaic model of membrane structure.
- 1. Plasma membrane is phospholipid bilayer in which protein molecules are partially or wholly embedded.
- 2. Embedded proteins are scattered throughout membrane in irregular pattern, depending on the membrane.

- Membrane structure has 2 components:
 - 1. Lipids
 - 2. Proteins
 - phospholipids spontaneously arrange in bilayer due to amphipathic nature.

- Plasma membrane is differentially permeable; only certain molecules can pass.
- Permeable membrane allows all molecules to pass through.
- Impermeable membrane allows none to pass
- Semipermeable membrane allows some molecules to pass through.

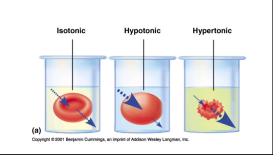

Types of Membranes and Transport

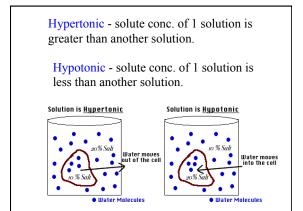
- Small non-charged lipid molecules (alcohol, oxygen) pass freely through membrane.
- Small polar molecules (CO₂, H₂O) pass through on concentration gradient.
- Macromolecules cannot cross a membrane.
- Ions and charged molecules have difficulty crossing part of bilayer.


Chapter 7: Types of Membranes and Transport

- Passive Transport moves molecules across membrane without use of energy by cell.
 Includes diffusion and facilitated transport.
- Active Transport uses energy (ATP) to move molecules across membrane.

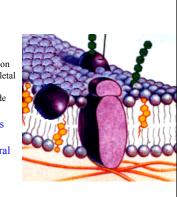
- Includes exocytosis, endocytosis, and pinocytosis.


- Osmosis is the diffusion of water (aquaporins) across a differentially permeable membrane.
- Osmotic pressure is hydrostatic pressure, or pressure that develops in the cell due to osmosis.
- Osmosis is constant process in life.
 - Ex: water absorbed in large cointestine, retained by kidneys, and taken up by blood.



Osmosis (Water moves by

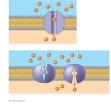
large concentration gradient) idneys,


- Tonicity is strength of a solution in relationship to osmosis, determining movement of water into or out of cell.
- Isotonic solute conc. of 2 solutions are equal.

Cholesterol

- Glycolipids
- Glycoproteins
- Glycolipids and proteins occur only on outside and cytoskeletal filaments attach to proteins on the inside surface.
- Plasma membrane is asymmetrical – Integral vs. Peripheral proteins

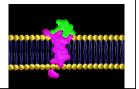
Fluidity of the Plasma Membrane


- At body temperature, the phospholipid bilayer has consistency of olive oil.
- Greater concentration of unsaturated fatty acid residues, the more fluid the bilayer.
- Evolutionary adaptations and lipid composition.
- Fluidity allows cells to be pliable.
- Some proteins are held in place by cytoskeletal filaments; most drift.

Membrane Proteins & their functions

• The membrane proteins determine most of the membranes function

1. Transport

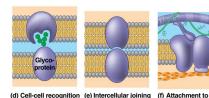

- Channel Proteins: allow certain molecules to pass through.
 - Carrier Proteins: Interact with molecules so they can pass • Facilitated Diffusion

Membrane Proteins

2. Enzymatic proteins catalyze specific metabolic reactions.

3. Signal transduction- Receptor proteins –are shaped so a specific molecule (like a hormone) can bind to it. External messenger (ligand) binds and causes shape changes relaying messages to inside of cell

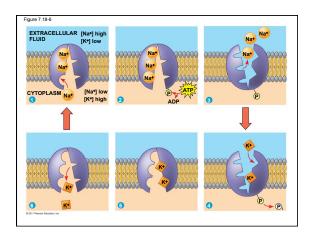
the cytoskeleton

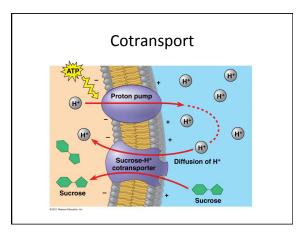

and extracellular matrix (ECM)

4. Cell-Cell Recognition

- Membrane carbohydrate chains of glycolipids and glycoproteins identify cell.
 - Chains may vary by # of sugars.
 - Chains vary in branching.
 - Sequence of sugars in chains vary.
- In development, different type cells develop their own carbohydrate chains, allowing tissues and cells to sort themselves out in the embryo.
- Blood type

 Intracellular joining – some proteins hook cells together (gap junctions)

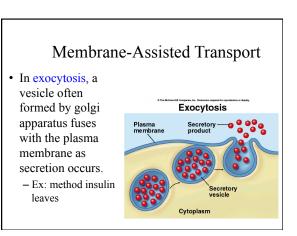

6. Attachment to cytoskeleton

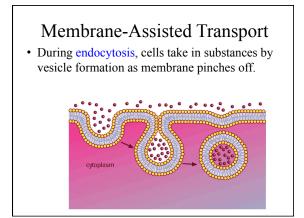


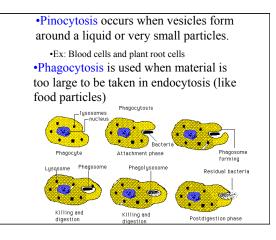

Active Transport

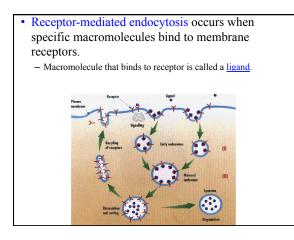
- Active transport is transport of specific solutes against conc. gradients through use of cellular energy (ATP).
- Active transport requires ATP, cells must have a high # of mitochondria near membrane.
- Proteins involved in active transport are a type of carrier protein called "pumps."

-Ex: Sodium – potassium pump Cotransport – Driven by one gradient








Transport Summary				
	Where does it occur in the membrane?	Does it require transport protein?	Does it require input of energy?	
Simple Diffusion				
Facilitated Diffusion				
Active Transport				

Transport Summary			
	Where does it occur in the membrane?	Does it require transport protein?	Does it require input of energy?
Simple Diffusion	Across the phospholipid bilayer	No	No
Facilitated Diffusion	Through membrane proteins	Yes	No
Active Transport	Through membrane proteins	Yes	Yes

That's right..Chapter 7 is over...